

X-ray imaging technology to optimise gas drainage systems

School of Petroleum Engineering

Peyman Mostaghimi, Ryan Armstrong

Never Stand Still Faculty of Engineering School of Petroleum Engineering

Our Group

X-ray micro-tomography Imaging Laboratory

3D images of reservoir rock

- 75 mm diameter cores → 50 micrometer resolution
- 2 mm diameter cores → 2 micrometer resolution
- -<1 mm diameter cores → 800 nm resolution

Supercomputing Facilities

- allocated 1.8 million core-hours
- Advanced image processing
- 3D flow simulations

CT technology revolutionised medics, how can it help miners?

1972

X-ray micro-Computed Tomography

Digital Coal Work Flow

- Core analysis
- -cleat spacing
- -cleat orientation
- -Litho-type banding

- Quantification
- -Identification of minerals
- -Aperture width
- -Porosity
- -Permeability
- -Relative Permeability

Image Technique

Dry Image Wet Image Wet - Dry

- The coal sample is saturated with a contrast agent highlight the porous regions, i.e. cleats and micro-porosity
- Wet-Dry = dark regions are either cleat are micro-porous regions
- Technique identifies coal features that are not visible in the original dry image

- a) Dry micro-CT image
- b) Segmented micro-CT image
- c) Extracted medial axis of pore space
- d) Widening the medial axis based on intensity values and SEM calibration. This image can be used for further analysis.

Micro-porous region

Sub-resolution fracture

Macerals

SEM combined with CT imaging

Permeability-Porosity Curve

Inclusion of adsorption/ desorption into a full model

Our workflow suggested for drainage systems

- Taking some samples from the mines.
- X-ray image them and obtain in-situ permeability, relative permeability and adsorption/desorption characteristics.
- Use geostatistics to make the whole mine model based on limited samples.
- Optimise well placement, design drainage strategies, etc.

Advantages

- 1. Coal samples from mines
- 2. Gas drainage data to calibrate our model

Thanks. Visit our website:

www.mutris.unsw.edu.au

